
ION
IMPLEMENTATION

OF THE
DTN PROTOCOL

ION
IMPLEMENTATION

OF THE
DTN ARCHITECTURE

Day 3 Agenda – Afternoon

o Configuration
o Recovery
o Security
o Tuning
o Troubleshooting
o Applications

Key Topics

TRAINING OVERVIEW

For more detail on the architecture, structure, functions, and
modules of ION, see the “ION Design Guide” in the top-level
directory of the ION download (from the SourceForge download site,
https://sourceforge.net/projects/ion-dtn/).

For more detail on ION configuration, tuning, and troubleshooting,
see the “ION Deployment Guide” in the same directory.

Reference materials

ION IN-DEPTH KNOWLEDGEIN-DEPTH

https://sourceforge.net/projects/ion-dtn/

Network Management

ION can be extensively tailored for specific environments by means
of compile-time switches. Details are provided in the Deployment
Guide, but here is a partial summary:

• PRIVATE_SYMTAB – configure local symbol table
• FSWLOGGER – provide overriding message logging function for flight software
• FSWCLOCK – provide overriding time reporting function for flight software
• FSWWDNAME – provide overriding working directory name function for flight

software
• FSWSYMTAB – provide overriding symbol table access function for flight software
• GDSLOGGER – provide overriding message logging function for ground software
• ION_OPS_ALLOC – overriding percentage of heap reserved for ION operations
• ION_OPS_MARGIN – overriding percentage of heap reserved for margin

Compile-time configuration (1 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

• HEAP_PTRS – enables heap object access by pointer
• NO_SDR_TRACE – disables heap space allocation (i.e., leak) tracing
• NO_PSM_TRACE – disables working memory allocation tracing
• IN_FLIGHT – disables core file production on unrecoverable error
• ERRMSGS_BUFSIZE – sets size of buffer for composing ION error messages
• SPACE_ORDER – indicates number of bits in a pointer
• NO_SDRMGT – limits SDR system to managing transactions
• DOS_PATH_DELIMITER – sets the character used as path delimeter
• ION_NOSTATS – disables the logging of bundle processing statistics
• CGR_DEBUG – controls logging of debug messages from CGR
• ION_BANDWIDTH_RESERVED – turns on starvation control in bundle transmission

Compile-time configuration (2 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Most of the parameters that configure an ION node are declared at
the time the node is created: administration utility programs as
listed below are passed configuration files as noted. See the man
pages for these utility and file names for details.

• ionadmin(ionrc, ionconfig)
• ionsecadmin(ionsecrc)
• ltpadmin(ltprc)
• bpadmin(bprc)
• ipnadmin(ipnrc)
• dtn2admin(dtn2rc)
• cfdpadmin(cfdprc)
• bsspadmin(bssprc)
• dtpcadmin(dtpcrc)

Runtime configuration (1 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Many node configuration parameters can also be revised after the
node has been instantiated – in some cases, even while the node is
running:

• BP convergence-layer elements can be stopped and restarted.
• BP endpoints can be added and removed.
• Security rules can be added and removed.
• Contacts can be added and removed.
• Etc.

Runtime configuration (2 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

It’s possible to run multiple ION nodes on the same computer – even
in the same core.

• A separate directory must be created for each node, containing all
configuration files for that node.

• The ionconfig variables wmKey and sdrName must have different values for
all nodes.

• Environment variable ION_NODE_LIST_DIR – giving the location of the
ion_nodes file that indicates which nodes are resident in which directories –
must be defined in the environment of every ION task.

• See the Deployment Guide for details.

Multi-node Operation

ION IN-DEPTH KNOWLEDGEIN-DEPTH

A new, comprehensive system for network monitoring and control –
superseding the ION administration utilities – has been developed
and is included with ION 3.6.2.
It’s called nm, an implementation of the emerging Asynchronous
Management Protocol (AMP) standard.
However, graphical user interface support for nm is not yet
complete and there is currently little documentation, so we won’t
cover it now.
nm will be discussed in a future edition of the ION course, or
possibly an additional course.

Network Management

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Every ION node can be individually configured for support of ION
transaction reversibility:

• The configFlags argument passed to ionadmin sets this switch.
• When transaction reversibility is disabled, any ION transaction failure or

cancellation results in an “unrecoverable error” log message and (normally)
a core dump. This is convenient during software development.

• When transaction reversibility is enabled, any ION transaction failure or
cancellation causes all heap modification operations performed during the
current transaction to be reversed and triggers execution of the ionrestart
utility program. ionrestart automatically shuts down the node and restarts
it, so that working memory is brought into agreement with heap state.

• Transaction reversibility also enables recovery from an unplanned node
shutdown, as in a hardware power-on reset.

Transaction reversibility

ION IN-DEPTH KNOWLEDGEIN-DEPTH

ION provides support for DTN security in multiple modules:
• A central security database management system, including key

management, is included in the ici module (the ionsecadmin utility and
ionsecrc configuration files). This general facility provides services to the
security adaptations in other ION modules.

• Adaptations for some simple LTP security are included in the ltp module.
• Adaptations for bundle security are included in the bp module.
• Some simple authentication mechanisms are also built into the brs (Bundle

Relay Server) convergence-layer protocol in the bp module.
Like network management, security in ION may be a large enough
topic to merit its own separate course. We won’t try to cover it here.

Security

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Tuning

The fundamental purpose of ION is to maximize the rate at which
important information is delivered to network user applications.

What to tune for

ION IN-DEPTH KNOWLEDGEIN-DEPTH

ION’s design itself helps to achieve that purpose, e.g.:
• The protocol designs attempt to minimize overhead that wastes bandwidth.
• Retransmission mechanisms attempt to minimize data loss.
• Routing mechanisms attempt to minimize end-to-end delivery latency.
• Rate control and congestion control attempt to maximize bandwidth utilization.
• “Blocking” resource allocation mechanisms exert indirect control on data rates.
• Bundle class of service enables preferential forwarding of more important data.
• “Critical” bundles are forwarded over all paths to the destination concurrently.

But operational configuration decisions can affect the rate of important
information delivery in either positive or negative ways.

When links are under-utilized, the rate of important delivery may not be as high as it might be – so ION
attempts to convey as much data as possible during every contact opportunity.
This means, though, that sometimes more data will be presented to the links than they can convey.
 In the Internet, data rates can be adjusted instantly, cooperatively, by means of flow control protocols.
But in DTN, in the general case, precise flow control is impossible because round-trip communication
can take a long time. So ION must simply discard excess traffic – proactively when possible and
reactively when necessary.
The key factor in these decisions is the bundle’s Time To Live (TTL).

Proactive data triage Reactive data triage
Proactive data triage occurs when ION determines that it cannot
compute a route that will deliver a given bundle to its final
destination prior to expiration of the bundle’s TTL. So a bundle
may be peremptorily discarded because its TTL is too short,
given the backlog of bundles awaiting transmission to the
neighboring node that is first on the path to the destination.

The destruction of bundles due to TTL expiration prior to
successful delivery to the final destination occurs when the
network conveys bundles at lower net rates than were projected
during route computation.
Example of causes: Contacts may be shortened by the
configuration of ION itself, or high R/F interference or
underestimated acknowledgment round-trip times may cause
an unexpectedly high volume of retransmission traffic.

Data triage (1 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

To tune an ION-based network, try to encourage a modicum of proactive data triage and as little
reactive data triage as possible:
1. Estimate convergence-layer protocol overhead as accurately as possible in BP configuration.
2. Synchronize nodes’ clocks as accurately as possible. Try to keep clock error as close to zero as
possible.
3. Set LTP session limit and block size threshold generously to assure that LTP does not constrain
data flow to rates below those supported by BP rate control.
4. Set ranges (one-way light times) and queuing delays as accurately as possible.
5. Communicate changes in configuration (especially contacts and ranges) to all nodes as far as
possible in advance of the time they take effect.
6. Provide all nodes with as much storage capacity as possible for queues of bundles awaiting
transmission.

Data triage (2 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

LTP configuration exerts a heavy influence on ION performance.
Unfortunately, tuning LTP in ION is something of a black art. There are a large number of
configuration parameters, and the settings of those parameters can affect throughput in
non-obvious ways.
To help with this network management task, an Excel spreadsheet named ION-LTP-
configuration.xls is provided. This spreadsheet constitutes a rough model of the
characteristics of a single LTP “span”, i.e., the relationship between a single pair of LTP
engines (BP nodes): it indicates how changing the values of various span parameters will
affect several operational figures of merit.
The use of the spreadsheet is itself less than obvious, so documentation is provided in a
file named ION-LTP-configuration.pdf.

LTP tuning (1 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

In general:
• A large block size means a lot of LTP segments per session (good for a high-rate

return, low-rate forward link situation).
• A small block size means the number of segments per session is smaller. LTP

protocol will complete the block transfer more quickly because the number of
segment retries is generally smaller.

• A good starting point is to set block aggregation size threshold to the number of
bytes that will typically be transmitted in one second, so that blocks are typically
clocked out about once per second. The maximum number of export sessions then
should be at least the total number of seconds in the round-trip time for traffic on
this LTP span, to prevent transmission from being blocked due to inability to start
another session while waiting for the LTP acknowledgment that can end one of the
current sessions.

• When bit error rates are high, LTP performance can be improved by reducing
segment size and/or block aggregation size threshold.

LTP tuning (2 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Troubleshooting

What could possibly go wrong?

ION IN-DEPTH KNOWLEDGEIN-DEPTH

ION is designed to fit within a tight set of constraints, over a very wide range of
deployment environments.

To make this possible, ION operates within a large number of variable
configuration parameters that make it adaptable on many dimensions.

This makes instantiating a new ION-based network almost always possible, but
often difficult. It’s easy to make a mistake.

The good news is that once you’ve got ION running well in your environment, it
should provide good service indefinitely without requiring much attention.

The ion.log file

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Whenever anything weird happens while you are using ION:

Always, always look at the ion.log
file first.

The time-tagged messages printed in the ion.log file will very often give you at
least a clue as to what failed.

“Watch” characters (1 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Several ION modules can be configured to print “watch” characters to standard
output (your console) as various significant events in DTN traffic flow occur.
The stream of watch characters appearing in stdout can give you a succinct,
coarse, but comprehensive trace of activity in the nodes of your network.
For details, see the man pages for bprc, ltprc, cfdprc, bssprc, etc. Keith will
present an example in the next hands-on segment of the class.

“Watch” characters (2 of 2)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

BP Watch Characters:
a new bundle is queued for forwarding
b bundle is queued for transmission
c bundle is popped from its transmission queue
m custody acceptance signal is received
w custody of bundle is accepted
x custody of bundle is refused
y bundle is accepted upon arrival
z bundle is queued for delivery to an application
~ bundle is abandoned (discarded) on attempt to forward it
! bundle is destroyed due to TTL expiration
& custody refusal signal is received
bundle is queued for re-forwarding due to CL protocol failure
j bundle is placed in "limbo" for possible future re-forwarding
k bundle is removed from "limbo" and queued for re-forwarding
$ bundle's custodial retransmission timeout interval expired

LTP Watch Characters
d bundle appended to block for next session
e segment of block is queued for transmission
f block has been fully segmented for transmission
g segment popped from transmission queue
h positive ACK received for block, session ended
s segment received
t block has been fully received
@ negative ACK received for block, segments retransmitted
= unacknowledged checkpoint was retransmitted
+ unacknowledged report segment was retransmitted
{ export session canceled locally (by sender)
} import session canceled by remote sender
[import session canceled locally (by receiver)
] export session canceled by remote receiver

sdrwatch, psmwatch

ION IN-DEPTH KNOWLEDGEIN-DEPTH

ION’s SDR heap storage and working memory are monolithic memory partitions
for which dynamic allocation is privately managed by the SDR and PSM systems.
This means that industry standard memory debugging tools like valgrind have no
visibility into ION memory management. Yet we sometimes still need to debug
memory utilization.
This is why the sptrace module was developed for ION. sptrace tracks all memory
allocation and freeing for a single memory partition managed by SDR or PSM,
enabling detection of leaks and other memory management errors.
The sdrwatch and psmwatch utilities are the developers’ tools for examining the
data collected by sptrace. They are not especially slick, but they do work. See
the man pages for details on how they can be used.

Other troubleshooting tools

ION IN-DEPTH KNOWLEDGEIN-DEPTH

When you are developing software that uses or extends ION, you may sometimes
encounter errors that you can’t understand and correct simply by looking at error
messages and watch characters.
ION is developed exclusively on Linux machines because historically Unix-
derived operating systems have provided the most powerful debugging tools.
That may be changing, but for now ION development is still mostly old-school.
To make life easy on yourself, develop on a Linux box and become familiar with
the sorcerous genius of gdb.

“Wrong profile for this SDR”

ION IN-DEPTH KNOWLEDGEIN-DEPTH

While you are experimenting with instantiating new DTN nodes, always erase your
previously created node completely before trying to create a new one.
ION will retain all of the state of that old node until you explicitly erase it. If the
old node isn’t completely erased, either you will pick up the old node state or else
your attempt to re-create the new node will fail because its parameters conflict
with the old configuration of that node.
To erase the previously created node completely:

• Do a clean shutdown if possible, using “ionstop” or a similar script. These scripts use ION
admin utilities to cleanly stop all daemons.

• Run the “killm” script. This script will try to kill any leftover running daemons, in the event that
your node ended by an unrecoverable error rather than a clean shutdown.

• Run the “ipcs” command to make sure that all shared-memory semaphores have been
destroyed by killm.

• If any shared-memory semaphores remain, use “ps” to locate leftover running ION daemons
and use “kill -9” to terminate them, then try again.

“Can’t find ION security database”

ION IN-DEPTH KNOWLEDGEIN-DEPTH

This message is just a warning, but it’s annoying.

To make it go away, always pass the “1” command to ionsecadmin during
instantiation of any new node.

LAN firewalls

ION IN-DEPTH KNOWLEDGEIN-DEPTH

If you find that no data can flow between DTN nodes over your local area network
(using TCP/IP or UDP/IP at the convergence layer or LTP link service layer), make
sure you don’t have a LAN communication problem:

• Might a firewall setting be preventing traffic between the LTP or UDP ports you’re using?
• Might the be a divergence in DNS name resolution due to a difference in /etc/host files?

Clock disagreement

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Remember that BP relies on time-to-live expiration to clear undelivered bundles
out of the network, releasing buffer space for more traffic.
This means that if the clocks of two nodes don’t report the same time, bundles
issued by one node with a given expected expiration time might be deleted
immediately upon reception by the other node – which thinks that expiration time
has already passed.
Possible ways that clocks can disagree:

• Clocks don’t always keep time accurately. The time reported by a clock may drift.
• One machine’s clock might be on the UTC time scale while the other’s is on local time.
• The two machines’ clocks might be configured for different time zones.
• One machine’s clock might be adjusted for Daylight Savings Time while the other’s is not.

Missing ranges

ION IN-DEPTH KNOWLEDGEIN-DEPTH

ION nodes typically use Contact Graph Routing to compute routes to bundles’
destinations and thereby determine which neighboring nodes to forward those
bundles to.
But CGR can’t compute routes if information is missing in the contact plans. It
needs not only the anticipated contacts but also all ranges (that is, distances
expressed in light seconds) between nodes – because the time required to travel
from one node to the next is a key factor in selecting between contacts while
computing a route.

• Note that ION doesn’t expect the range between nodes to be symmetrical: that is, it’s fine for a
bundle sent from node A to reach node B after 3 seconds but for the reply from B to A to take
11 seconds (due to additional queuing delay at B, for example).

• When a range command cites two node numbers A and B where B (the second) is numerically
larger than A, the same value is implied for the reverse direction (B to A) unless overridden.

• A range command citing node numbers A and B where B (the second) is numerically smaller
than A overrides the default assumption. It does not imply anything about the BàA range!

CFDP
AMS
Bundle Streaming Service
DTPC

Applications

CCSDS FILE DELIVERY
PROTOCOL (CFDP)

CCSDS File Delivery Protocol (CFDP)

The ION implementation of CFDP offers support for the following standard capabilities:
• Segmentation of files on user-specified record boundaries
• Transmission of file segments in protocol data units that are conveyed by an underlying

Unitdata Transfer service
• Reassembly of files from received segments
• User-specified fault handling procedures
• Operations on remote file systems

 Remember! All CFDP transaction state is safely retained in the ION heap for rapid
recovery from a spacecraft or software fault.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Compile time options

Defining the following macro, by setting a parameter that is provided to the C compiler, will
alter the functionality of CFDP.

TargetFFS: Setting this option adapts CFDP for use with the TargetFFS flash file system on
the VxWorks operating system. TargetFFS locks one or more system semaphores so long
as a file is kept open.

CCSDS File Delivery Protocol (CFDP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Building CFDP
1. The “bp” module has to be built for the platform on which CFDP will run.
2. Edit the Makefile in ion/cfdp:

• Make sure PLATFORMS is set to the name of platform on which you plan to run BP.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building ici.

3. Then:
• cd ion/cfdp
• make
• make install

CCSDS File Delivery Protocol (CFDP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Running CFDP

The executable programs used in operation of the CFDP component of ION include:
• The cfdpadmin protocol configuration utility, invoked at node startup time and as needed thereafter.
• The cfdpclock background daemon, which effects scheduled CFDP events such as check timer

expirations. The cfdpclock task also effects CFDP transaction cancellations, by canceling the
bundles encapsulating the transaction’s protocol data units.

• The bputa UT-layer input/output task, which handles transmission of CFDP PDUs encapsulated in
bundles.

CCSDS File Delivery Protocol (CFDP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Testing CFDP

Test executables
• cfdptest is provided to support testing and debugging of the DGR component of ION.

Remember: The CFDP administration command
(cfdprc) file provides the information needed to
configure CFDP on a given ION node.

CCSDS File Delivery Protocol (CFDP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

THE
ASYNCHRONOUS MESSAGE

SERVICE (AMS)

Asynchronous Message Service (AMS)

AMS is a data system communications architecture where communication relationships
among modules are self-configuring à minimized complexity in the development and
operations of modular data systems.

The purpose of AMS is to reduce mission cost and risk by providing standard, reusable
infrastructure for the exchange of information among data system modules in a manner that
is simple to use, highly automated, flexible, robust, scalable, and efficient.

 Remember! The CCSDS AMS standard conforms fully to CCSDS 735.0-B-1

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Asynchronous Message Service (AMS)

Compile-time options

Defining the following macros will alter the functionality of AMS.

NOEXPAT: Setting this option adapts AMS to expect MIB information to be presented to it in “amsrc”
syntax rather than in XML syntax, normally because the expat XML interpretation system is not
installed. The default for AMS is now NOEXPAT.

AMS_INDUSTRIAL: Setting this option adapts AMS to an “industrial” rather than safety-critical model
for memory management. By default, the memory acquired for message transmission and reception
buffers in AMS is allocated from limited ION working memory, which is fixed at ION start-up time => this
limits the rate at which AMS messages may be originated and acquired. When –DAMS_INDUSTRIAL is
set at compile time, the memory acquired for message transmission and reception buffers in AMS is
allocated from system memory, using the familiar malloc() and free() functions; this enables much
higher message traffic rates on machines with abundant system memory.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Asynchronous Message Service (AMS)

Building AMS
1. The “bp” component has to be built for the platform on which AMS runs.
2. Edit the Makefile in ion/cfdp:

• Just as for bp, make sure PLATFORMS is set to the name of platform on which you plan to run AMS.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building bp.

3. Then:
• cd ion/ams
• make
• make install

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Asynchronous Message Service (AMS)

Running AMS

The executable programs used in operation of the AMS component of ION include:
• The amsd background daemon serves as configuration server and/or as the registrar for a single

application cell.
• The ramsgate application module serves as the Remote AMS gateway for a single message space.
• The amsstop utility terminates all AMS operation throughout a single message space.
• The amsmib utility announces supplementary MIB information to selected subsets of AMS entities

without interrupting the operation of the message space.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Asynchronous Message Service (AMS)

Testing AMS

Test executables
• amsbenchs is a continuous source of messages.
• amsbenchr is a message receiver that calculates bundle transmission performance statistics.
• amshello is an AMS “hello, world” demo program.
• amsshell is a console-like application for interactively publishing, sending, and announcing text

strings in messages.
• amslog is a console-like application for receiving messages and piping their contents to stdout.
• amslogprt is a pipeline program that simply prints AMS message contents piped to it from amslog.
• amspubsub is a pair of functions for rudimentary testing of AMS functionality in a VxWorks

environment.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

THE
 BUNDLE STREAMING

 SERVICE (BSS)

Bundle Streaming Service (BSS)

The BSS service provided in ION enables continuously generated application data units
(e.g.: stream of video) to be presented to a destination application in two modes
concurrently:
• In the order in which the data units were generated, with the least possible end-to-end delivery

latency, but possibly with some gaps due to transient data loss or corruption.
• In the order in which the data units were generated, without gaps but in a non-real-time “playback”

mode.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Bundle Streaming Service (BSS)

Compile-time options

Defining the following macro, by setting a parameter that is provided to the C compiler (e.g.,
–DWINDOW=10000), will alter the functionality of BSS.

WINDOW=xx: Setting this option changes the maximum number of seconds by which the BSS database
for a BSS application may be “rewound” for replay. The default value is 86400 seconds (24 hours).

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Building BSS
1. The “bp” component of ION has to be built for the platform on which BSS will run.
2. Edit the Makefile in ion/bss:

• As for ici, make sure PLATFORMS is set to the name of platform on which you plan to run BSS.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building ici.

3. Then:
• cd ion/bss
• make
• make install

Bundle Streaming Service (BSS)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Testing BSS on a development platform

Test executables
• bssdriver sends a stream of data to bsscounter for non-interactive testing.
• bssStreamingApp sends a stream of data to bssrecv for graphical, interactive testing.

Remember! No additional configuration files or runtime
executables are required for the operation of the BSS
component of ION.

Bundle Streaming Service (BSS)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Delay-Tolerant Payload
Conditioning (DTPC)

Delay-Tolerant Payload Conditioning (DTPC)

The DTPC service provided in ION is an application service protocol that offers delay-
tolerant support for several end-to-end services to applications that may require them:

• Delivery of application data items in transmission (rather than reception) order
• Detection of reception gaps in the sequence of transmitted application data items, with end-to-

end negative acknowledgment of the missing data
• End-to-end positive acknowledgment of successfully received data
• End-to-end retransmission of missing data, driven either by negative acknowledgment or timer

expiration
• Suppression of duplicate application data items
• Aggregation of small application data items into large bundle payloads, to reduce bundle

protocol overhead
• Application-controlled elision of redundant data items in aggregated payloads, to improve link

utilization

NOTE, though, that these are not really delay-tolerant services! If your communication
round-trip times are long, data delivery performance will suffer if you use DTPC.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Building DTPC
1. The “bp” component of ION has to be built for the platform on which DTPC will run.
2. Edit the Makefile in ion/dtpc:

• As for ici, make sure PLATFORMS is set to the name of platform on which you plan to run DTPC.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building ici.

3. Then:
• cd ion/dtpc
• make
• make install

Delay-Tolerant Payload Conditioning (DTPC)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Testing dtpc on a development platform

Test executables
• dtpcsend sends DTPC data items to dtpcreceive for performance testing.

Remember! No additional configuration files or runtime
executables are required for the operation of the DTPC
component of ION.

Delay-Tolerant Payload Conditioning (DTPC)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Theory

Configuration

Recovery

Security

Tuning

Troubleshooting

Applications

WRAP-UP

Topics discussed this afternoon:

Any questions?

Q&A

Thank you!

Happy networking!

