
ION
IMPLEMENTATION

OF THE
DTN PROTOCOL

ION
IMPLEMENTATION

OF THE
DTN ARCHITECTURE

Day 1 Agenda – Afternoon

o DTN: some technical details
o Survey of DTN implementations
o ION architecture
o ION structure and functions
o The core ION modules

Key Topics

TRAINING OVERVIEW

DTN Details

Implementing the DTN architecture
“The architecture embraces the concepts of occasionally-connected networks that may
suffer from frequent partitions and that may be comprised of more than one divergent set
of protocols or protocol families.” (RFC 4838).

So how exactly does this work?

ION AND DTNINTRO

It’s not really new
The DTN architecture is much like the architecture of the Internet, except that it is one
layer higher in the familiar ISO protocol “stack”.

The Bundle Protocol (BP) is designed to function as an “overlay” network protocol that
interconnects “internets” – including both Internet-structured networks and also data paths
that utilize only space communication links, in much the same way that IP interconnects
“subnets” such as those built on Ethernet, SONET, etc.

ION ARCHITECTUREINTRO

Data traversing a DTN are conveyed in DTN
bundles – which are functionally analogous
to IP packets – between BP endpoints
which are functionally analogous to
sockets.

A single BP node may communicate via
multiple BP endpoints, just as a single IP
node (host or router) may communicate via
multiple sockets.

The DTN protocol stack

ION ARCHITECTUREINTRO

“Convergence-layer” protocols
Just as in the Internet, the stacking of DTN protocols is reflected in the
structure of the protocol data units that are transmitted over the network.

The Internet

Application

Transport

Packet

Data Link

Physical

CFDP

LTP

Encap

USLP

Ka-band CFDP file data segmentLTP headerEncap headerUSLP header

LTP segment

Encapsulation packet

USLP frame

Bundle BP

BP “header”

Bundle

Convergence-layer interface

Structure of a Bundle

Every bundle is a sequence of blocks:
• Primary block
• Zero or more extension blocks
• Payload block

BP is designed for bandwidth efficiency where possible, expansion as necessary. Most
fields are variable-length.

ION AND DTNINTRO

Payload blockExtension
block

Extension
block

…Primary block

Contains:
• Source and destination EIDs
• Time to live
• Processing flags
• Class of service
• Etc.

For example:
• Block integrity block (BIB)
• Block confidentiality block (BCB)
• Extended class of service
• Bundle age
• Others

For example:
• CFDP file data segment
• RAMS message
• DTPC aggregate
• An entire file
• Others

Bundle “header”

Bundle fragmentation

When a bundle is too large to fit into a convergence-layer protocol data unit, the bundle can
be fragmented into two smaller bundles.

• Only the payload is fragmented. Each fragment is a full-fledged, routable bundle with a primary
block that is mostly copied from the original bundle.

• Fragmentary bundles may be further fragmented as necessary.
• Fragments are reassembled at the final destination to reconstitute the original payload, which is

then delivered.

ION AND DTNINTRO

Payload blockPrimary block

Payload blockPrimary block Payload blockPrimary block

The sources and destinations of bundles are endpoints, identified by endpoint IDs that are
functionally similar to IP addresses.

But BP endpoint IDs are names, not addresses; they have no topological significance and
contain no hints about the route the bundle should take.

Instead they are Uniform Record Identifiers (URIs), i.e., ASCII text strings of the general form:
 scheme_name:scheme_specific_part

For example: dtn://topquark.caltech.edu/mail conforms to the “dtn” scheme.

Endpoint IDs (1 of 2)

ION ARCHITECTUREINTRO

To reduce transmission overhead, endpoints may instead be named in conformance to the
alternative “ipn” scheme:

 ipn:node_number.service_number

Endpoint IDs formed in the “ipn” scheme can be abbreviated to pairs of unsigned binary
integers by means of a technique called Compressed Bundle Header Encoding (CBHE).

ipn-scheme BP endpoint IDs (EIDs) look a little bit like Internet addresses (for example,
“ipn:3982.64”), but they are still just names (written mostly in numbers rather than letters).

Node numbers identify the flight or ground data system computers on which network software
executes, and service numbers are roughly analogous to TCP and UDP port numbers, but node
numbers are not topologically aggregated to indicate routes.

Endpoint IDs (2 of 2)

ION ARCHITECTUREINTRO

Remember! CBHE-conformant BP endpoint IDs (EIDs) are functionally and structurally similar
to Internet socket addresses. Node numbers are roughly analogous to Internet node numbers
(IP addresses), in that they typically identify the flight or ground data system computers on
which network software executes, and service numbers are roughly analogous to TCP and UDP
port numbers.

In the ION architecture there is a natural one-to-one mapping not only between BP node
numbers and BP nodes but also between BP node numbers and:

• LTP engine IDs
• CFDP entity numbers
• AMS continuum numbers

By convention, the same numerical value is usually used for a BP node number, the engine
number of the LTP engine used by that BP node, the entity number of the CFDP entity that uses
that BP node, and the continuum number of the AMS continuum that uses that BP node.

Node numbers

ION ARCHITECTUREINTRO

DTN was designed with security in mind from the very first day.
Bundle security is not a separate layer of protocol. It is a
mechanism that is built directly into BP itself:

• Every block of a bundle can be signed by a Bundle Integrity Block (BIB)
enabling detection of tampering with block data. When there a BIB for the
Primary block, which identifies the source node, the authenticity of the
bundle can be verified.

• Every block other than the Primary block can be separately encrypted by a
Block Confidentiality Block (BCB).

• For defense against traffic analysis, an entire block including Primary block
may be the payload of a Bundle In Bundle Encapsulation (BIBE) PDU, and
that BIBE’s payload can be encrypted.

Security

ION IN-DEPTH KNOWLEDGEIN-DEPTH

LTP is a convergence-layer transport protocol designed for use over space links.
LTP divides a data “block” (containing a higher-layer protocol data unit, typically a Bundle) into
individual segments for transmission and, much like TCP, detects segment transmission
failures, automatically retransmits lost segments as necessary, and reassembles segments into
the original block at the receiver.
Unlike TCP, LTP transmits segments for multiple blocks concurrently. Data sent by LTP will not
necessarily arrive in transmission order and there is no suppression of duplicate data arrival.
An LTP block may contain “red” data (for which loss detection and retransmission is required),
“green” data (for which there is no loss detection or retransmission), or red data followed by
green data in the same block.
LTP provides reliable transmission like BP custody transfer, but the unit of retransmission is
the segment rather than the entire bundle; more efficient use of transmission bandwidth.

Licklider Transmission Protocol (LTP)

ION ARCHITECTUREINTRO

DTN2, written in C and C++, comprises the reference implementation of the Bundle Protocol
(RFC 5050) together with implementations of supporting protocols including the Licklider
Transmission Protocol. It is the foundational software for the Networking for Communications
Challenged Communities (N4C) platform and project.

DTN2 Platform Applications:
DTNmailex is an Email application for DTN.
HTML requester is a web-caching application for DTN.
PyMail is a nomadic Email Application for the DTN.

DTN2 Platform Tools:
The N4C Integration platform provides an easy and simple way for the DTN user to install and use all the modules of DTN2.

DTN2 (1 of 2)

Download Link

DTN Core Protocol Implementations

ION IMPLEMENTATIONINTRO

https://sourceforge.net/projects/dtn/

Download Link

DTN2 includes an implementation of PRoPHET, a powerful DTN routing protocol that is highly
portable due to being based on the QT cross-platform framework: it runs on Windows,
Linux, OSx, Embedded Linux and Symbian platforms.

PRoPHET is included in the DTN2 software distribution along with applications and tools that
take advantage of its capabilities.

PRoPHET-enabled Applications:
NotSoInstatMessaging (NSIM): NSIM service can be used for sending/receiving the messages within a DTN network,
sending out SMS text messages to a GSM network and sending/receiving Email. It is based on the Nuntius Leo source
code, a free open-source Email client.

PRoPHET-enabled Tools:
PLogParser: Software tool for analyzing field test traces of PRoPHET routing activity.

DTN2 (2 of 2)

DTN’S Core Protocols Implementation

ION IMPLEMENTATIONINTRO

http://grasic.net/prophet/
http://nlcreator.sourceforge.net/nuntius_leo.html

POSTELLATION

Postellation is a DTN implementation that runs on Windows, MacOSX, Linux, BSD, and
RTEMS. It is packaged for easy installation and instant registration to the dtnbone for end-
users. It implements the Bundle Protocol [RFC5050].

POSTELLATION Applications:
a. dtnping/dtnpong

b. dtnsend/dtnrecv

c. HTTP/HTTPS Proxy

d. RSS news service delivery, such as NASA news over DTN

Download Link

DTN Core Protocols Implementation

ION IMPLEMENTATIONINTRO

http://postellation.viagenie.ca/

IBR-DTN
This implementation of the bundle protocol (RFC5050) and supporting protocols, written in
C++, is designed for embedded systems like the RouterBoard 532A or Ubiquiti RouterStation
Pro and can be used as framework for DTN applications.

The module-based architecture with multiple interfaces makes it possible to change functionalities like
routing or storage of bundle just by inheriting from the applicable class.
Applications:

Ø dtnsend
Ø dtnrecv
Ø dtntrigger
Ø dtnping
Ø dtntracepath
Ø dtninbox
Ø dtnoutbox
Ø dtnstream

IBR-DTN was developed at TU Braunschweig. It supports the TCP and UDP convergence layers,
the Bundle Security Protocol, and IPND neighbor discovery specifications.

IBR-DTN aims to be very portable; it is designed to run on embedded systems using OpenWrt. It
has been successfully tested on x86, MIPS, Raspberry Pi, BeagleBone, and various ARM
platforms. Additionally IBR-DTN supports standard x86/x64 Linux distributions (Debian, Ubuntu),
OS X, and Android smartphones. Source code and packages for various distributions are
available at the IBR-DTN project page.

DTN Core Protocols Implementation

ION IMPLEMENTATIONINTRO

http://www.openwrt.org/
http://www.ibr.cs.tu-bs.de/trac/ibr-dtn

JDTN

The JDTN implementation, written in Java by Cisco, contains a DTN 'core' that runs on any
platform that supports Java; it also contains a set of UIs for Android. It was developed for
mobile platforms, such as Android.

Implemented Protocols:

a. Bundle Protocol (BP) - RFC 5050

b. Licklider Transport Protocol (LTP) - RFC 5326

DTN Core Protocols Implementation

ION IMPLEMENTATIONINTRO

ION AND DTNINTRO

So why ION?

Flight Environment Constraints (1 of 3)

ION ARCHITECTUREINTRO

Link constraints – wireless links enabling interplanetary network
communication are generally slow and are usually asymmetric.

• Limited electrical power, relatively small antennae.
• So signals are weak. This has historically limited transmission from the

spacecraft to rates on the order of .25 Mbps to 6 Mbps.
• Additionally, reception sensitivity is limited. Rates of transmission to the

spacecraft have historically been even lower, on the order of 1 or 2 Kbps.
• So the cost per octet of data is on the links is high, and the links are heavily

subscribed.
• Economical use of reception and transmission opportunities is important.

Flight Environment Constraints (2 of 3)

ION ARCHITECTUREINTRO

Processor constraints:
• Limited electrical power, limited mass allowance.
• Intense radiation environment, mandating radiation-hardening, which is time-

consuming and expensive.
• Relatively small market, limiting incentive to do radiation-hardening

engineering for the latest advances in processor technology.
• So flight processors are always slower than engineering workstations.
• So the cost per processing cycle is high and the processors are heavily

subscribed.
• Economical use of processing resources is important.

Flight Environment Constraints (3 of 3)

ION ARCHITECTUREINTRO

Operation constraints:
• Hands-on repair is impossible, so reliability is key.
• Predictability enhances reliability, so flight software usually must meet hard

real-time deadlines. So typically real-time operating systems (RTOS) are
used: all software has historically run in “kernel” (rather than “user”) mode,
without memory protection.

• Dynamic allocation of system memory is difficult to predict, so it is typically
prohibited except in certain well-understood spacecraft states, e.g., start-up.
Software must live within static memory allocations.

ION is DTN designed for Space Flight

ION ARCHITECTUREINTRO

Terrestrial DTN DTN for Space Flight

Links Ethernet or WiFi
Fast, cheap, symmetrical

Directed, highly attenuated
Relatively slow, very expensive, asymmetrical
Must use reception/transmission contacts efficiently.

CPU, memory Commodity generic chips
Fast, cheap

Limited-production radiation-hardened chips
Relatively slow, very expensive
Must use processing resources efficiently.

Resource
management

Reboots are easy.
Dynamic management of
memory is routine.

Hands-on repair is impossible; must minimize risk.
Dynamic memory management is unpredictable.
Fixed memory allocation is provided at startup.

Operating System Commercial O/S with
memory protection; tasks
run in user space.

Real-time O/S, normally no memory protection – all
tasks run in kernel space.
Must be RTOS-compatible.

ION’s ARCHITECTURE
Design principles
Structure
Modules
Features

ION’s Design

ION ARCHITECTUREINTRO

The design of ION addresses all of those constraints:
• Built-in private dynamic management of memory allocated at startup.
• High-speed shared direct access to built-in object database.
• System-wide transaction mechanism, for safety:

• Ensures mutual exclusion, preventing lockouts and race conditions.
• Enables reversal of all database updates made within the current

transaction in case of software failure.
• Compressed bundle headers, for transmission economy.
• Zero-copy objects, for processing and storage economy.
• Written in C, for processing economy and small footprint.
• Portable among POSIX (and similar) operating systems, including RTOS:

• Linux, Windows, Android, Solaris, OS/X, RTEMS, VxWorks, FreeBSD

ION’s Design Principles (1 of 2)

ION ARCHITECTUREINTRO

• Use shared memory.
• Often there’s no protected memory, so we have no option.
• But this can be turned to advantage: shared memory is a highly efficient way

to pass data between flight software tasks.

ION’s Design Principles (2 of 2)

ION ARCHITECTUREINTRO

• Zero-copy procedures: leverage shared memory to minimize
processing overhead.
– Encapsulation in layers of protocol overhead (headers and trailers)

can be done by reference rather than by copy.
– The same data object can be shared by multiple tasks, provided

reference counting prevents premature deletion.
• Portability: this is an unfamiliar programming model, so we must

make it easy to develop in an environment with good
programming support (e.g., Linux) and then deploy – without
change – in the target RTOS environment.

General Design Overview

ION ARCHITECTUREINTRO

Application

Object database

Routing

Sender Receiver

issue deliver

transmit receive dispatch

bundles for delivery

bundles to be forwarded

ION Design Goals
o Reliable conveyance of data over a delay-

tolerant network (dtnet)

o Built on this capability, reliable data
streaming, reliable file delivery, and reliable
distribution of short messages to multiple
recipients (subscribers) residing in such a
network

o Inexpensive management of traffic through
such a network

o Inexpensive facilities for monitoring the
performance of the network

o Robustness against node failure

o Portability across heterogeneous
computing platforms

o High speed with low overhead

o Easy integration with heterogeneous
underlying communication infrastructure,
ranging from Internet to dedicated
spacecraft communication links

ION ARCHITECTUREINTRO

ION Modules Overview (1 of 2)
The ION distribution comprises the following software modules:

o bp (Bundle Protocol), a core DTN protocol that provides delay-tolerant forwarding of data
through a network in which continuous end-to-end connectivity is never assured, including
support for delay-tolerant dynamic routing.

o ltp (Licklider Transmission Protocol), a core DTN protocol that provides transmission
reliability based on delay-tolerant acknowledgments, timeouts, and retransmissions.

o dgr (Datagram Retransmission), an alternative implementation of LTP that is designed for use
in the Internet. It enables data to be transmitted via UDP with reliability comparable to that
provided by TCP.

o ici (Interplanetary Communication Infrastructure), a set of general-purpose libraries providing
common functionality to the other modules.

ION ARCHITECTUREINTRO

o cfdp (CCSDS File Delivery Protocol), application-layer service which utilizes underlying
DTN protocols for file transfer. CFDP performs the segmentation, transmission,
reception, reassembly, and delivery of files in a delay-tolerant manner.

o ams (Asynchronous Message Service), an application-layer service which utilizes
underlying DTN protocols for publication of short messages.

o bss (Bundle Streaming Service), a system for efficient data streaming over a delay-
tolerant network. It includes (a) a convergence-layer protocol (bssp) that preserves in-
order arrival of all data that were never lost en route, yet ensures that all data arrive at the
destination eventually, and (b) a library for building delay-tolerant streaming applications.

ION Modules Overview (2 of 2)

ION ARCHITECTUREINTRO

BP/LTP
The base Bundle Protocol [RFC5050] (BP) was developed by the Internet Research Task
Force (IRTF) Delay Tolerant Networking research group (dtnrg).

The Consultative Committee for Space Data Systems [CCSDS] produced profiles of the BP
[CCSDS BP] and LTP [LTP for CCSDS] specifications and standardized them for use by
CCSDS member agencies.

The profiles are interoperable with the base specification and include mechanisms for
increased bit efficiency (e.g. limiting the range of some random values in the protocols) as
well as protocol extensions such as the Enhanced Class of Service mechanisms for BP.

The ION BP/LTP code, conforming to those profiles, is available from SourceForge.

ION IN-DEPTH KNOWLEDGEIN-DEPTH

https://tools.ietf.org/html/rfc5050
https://public.ccsds.org/about/default.aspx
https://sourceforge.net/

Modules: a Closer Look

o BP, LTP Bundle Protocol and Licklider Transmission Protocol libraries and daemons
o ZCO Zero-copy objects capability: minimize data copying up and down the stack
o SDR Spacecraft Data Recorder: persistent object database in shared memory, using PSM and SmList
o SmList linked lists in shared memory using PSM
o SmRbt red-black trees in shared memory using PSM
o PSM Personal Space Management: memory management within a pre-allocated memory partition
o Platform common access to O.S.: shared memory, system time, IPC mechanisms
o Operating System POSIX thread spawn/destroy, file system, time

ION Software Structure

ION ARCHITECTUREINTRO

THE
 BUNDLE PROTOCOL

(BP)

Bundle Protocol (BP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Full implementation of the BP spec as developed by the DTN Research Group. (RFC
5050)
Includes support for:

• Prioritization of data flows
• Bundle reassembly from fragments
• Flexible status reporting
• Custody transfer

Additional features:
• Rate control provides support for congestion forecasting and avoidance.
• Bundle headers are compressed, to reduced protocol overhead and improve link

utilization.
• Also includes an implementation of Contact Graph Routing, a system for dynamic

routing over interplanetary links.

BP Compile-time options

Declaring values for the following variables, by setting parameters that are provided to the
C compiler (for example, –DION_NOSTATS or –DBRSTERM=60), will alter the functionality
of BP (see the ION Deployment Guide).

• TargetFFS
• BRSTERM=xx
• ION_NOSTATS
• KEEPALIVE_PERIOD=xx
• ION_BANDWIDTH_RESERVED
• ENABLE_BPACS
• ENABLE_IMC

Bundle Protocol (BP)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Building BP
1. The “ici” and “ltp” and “dgr” modules of ION must already be built for the platform on which BP

will run.
2. Edit the Makefile in ion/bp:
• Make sure PLATFORMS is set to the name of platform on which you plan to run BP.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building ici.

3. Then:
• cd ion/bp
• make
• make install

Bundle Protocol (BP)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Configuring BP
Reference files

The BP administration command (bprc) file: configuration of BP on a given ION node.
The IPN scheme administration command (ipnrc) file: configuration of static and default routes for
endpoints whose IDs conform to the “ipn” scheme.
The DTN scheme administration command (dtn2rc) file: configuration of static and default routes for
endpoints whose IDs conform to the “dtn” scheme as instantiated in the DTN2 reference
implementation.

Bundle Protocol (BP)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Testing BP
Test executables

• bpdriver is a continuous source of bundles.
• bpcounter is a bundle receiver that counts bundles as they arrive .
• bpecho is a bundle receiver that sends an “echo” acknowledgment bundle back to

bpdriver upon reception of each bundle.
• bpsource is a simple console-like application for interactively sending text strings in

bundles to a specified DTN endpoint, nominally a bpsink task .
• bpsink is a simple console-like application for receiving bundles and printing their

contents.

Bundle Protocol (BP)

ION IN-DEPTH KNOWLEDGEIN-DEPTH

THE
LICKLIDER TRANSMISSION

PROTOCOL (LTP)

Licklider Transmission Protocol (LTP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Full implementation of the LTP spec as developed by the DTN Research Group.
(RFC 5326)
Additional features:

• Aggregation of multiple service data units into a single block, to minimize the volume
of acknowledgment traffic over highly asymmetric links.

• Implements delay-tolerant, non-conversational flow control by limiting the number of
transmission sessions that can be in progress concurrently.

ION ARCHITECTUREINTRO

Sending
LTP Engine

Receiving
LTP Engine

Sending LTP
Client

Receiving
LTP Client

G

R

CP

CP Checkpoint
RS Report
Segment
RA Report Ack
EORP End of Red
Part
EOB End of Block
 Lost
Segment

Transactio
n.request

SessionStart.indicatio
n

GSArrival.
indications

RedPartReception.
indication

TransmissionSessio
n

Complete.
indication

InitialTransmission
Complete.indicatio

n

RA

RA

R

G

G

CP, EORP

RS

CP, EORP

RS

R
R
R
R
R
R

R

G

G

G

R
R
R
R
R

R

G

GEOB

SessionStart.indicatio
n

3

3
3

3

GY

RY

Green segment for
Client Service ID Y

Red Part Reception
to Client Service ID Y

Building LTP on a deployment platform
1. The “ici” component of ION must already be built for the platform running LTP.
2. Edit the Makefile in ion/ltp:

• PLATFORMS has to be set to the name of platform running LTP.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building ici.

3. Then:
• cd ion/ltp
• make
• make install

Licklider Transmission Protocol (LTP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Configuring LTP on a deployment platform

The LTP administration command (ltprc) file provides the information needed to configure LTP on a
given ION node.

Licklider Transmission Protocol (LTP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Running LTP on a deployment platform

The executable programs used in operation of the ltp component of ION include:
• The ltpadmin protocol configuration utility à invoked at node startup time and as needed thereafter.
• The ltpclock background daemon à its effects schedule LTP events such as segment

retransmissions.
• The ltpmeter block management daemon à segments blocks and effects LTP flow control.
• The udplsi and udplso link service input and output tasks à handle transmission of LTP segments

encapsulated in UDP datagrams (mainly for testing purposes).

ltpadmin starts/stops the ltpclock and ltpmeter tasks and, as mandated by configuration, the udplsi and
udplso tasks.

Licklider Transmission Protocol (LTP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Testing LTP on a deployment platform

Test executables
• ltpdriver is a continuous source of LTP segments.
• ltpcounter is an LTP block receiver that counts blocks as they arrive.

Licklider Transmission Protocol (LTP)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

DATAGRAM RETRANSMISSION
(DGR)

Datagram Retransmission (DGR)

The DGR module is an alternative implementation of LTP that is designed to operate
responsibly in the internet.

It is provided primarily as a candidate “primary transfer service” in support of AMS
operations in a non-delay-tolerant environment.

The DGR design combines LTP’s concept of concurrent transmission transactions with
congestion control and timeout interval computation algorithms adapted from TCP.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Datagram Retransmission (DGR)

Building DGR on a deployment platform
1. The “ici” component of ION must already be built for the platform running DGR.
2. Edit the Makefile in ion/dgr:

• Make sure PLATFORMS is set to the name of platform on which you plan to run DGR.
• Set OPT to the directory containing the bin, lib, include, etc. directories used for building ici.

3. Then:
• cd ion/dgr
• make
• make install

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Datagram Retransmission (DGR)

Testing DGR on a deployment platform

Test executables
• file2dgr repeatedly reads a file of text lines and sends copies of those text lines via DGR to dgr2file,

which writes them to a copy of the original file.

Remember! No additional configuration files or runtime
executables are required for the operation of the DGR
component of ION.

IN-DEPTH ION IN-DEPTH KNOWLEDGE

THE
INTERPLANETARY
COMMUNICATION

INFRASTRUCTURE
(ICI)

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

• Insulation of ION software elements from the differences among operating
systems.

• Flexible, dynamic private management of a fixed block of pre-allocated system
memory.

• Coexistence of multiple memory management instances (e.g., multiple shared-
memory partitions).

• Standardized management of linked lists in private and shared memory.
• Flexible, dynamic private management of a fixed block of non-volatile storage,

such as battery-backed memory or a pre-allocated file in a flash file system.
• Protocol data encapsulation by reference rather than by copy, plus a reference

counting system to enable safe concurrent access to a single non-volatile
storage object by multiple tasks.

Core services included in ICI:
a. Platform: contains operating-system-sensitive code that enables ICI to present a single programming
interface on all platforms.
b. Personal Space Management (PSM): performs high-speed dynamic allocation and recovery of
variable-size memory objects within an assigned memory block of fixed size.
c. Memmgr: enables multiple memory managers – for multiple privately-managed blocks of system
memory – to coexist within ION and be concurrently available to ION software elements.
d. Lyst system: manages doubly-linked lists in private memory.
e. Llcv (Linked-List Condition Variables) system: is an inter-thread communication abstraction that
integrates POSIX thread condition variables with doubly-linked lists in private memory.
f. Smlist: a doubly-linked list management service which resides in shared DRAM.
g. SmRbt service: provides mechanisms for populating and navigating “red/black trees” (RBTs) residing
in shared DRAM.

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

h. Simple Data Recorder (SDR) system: manages non-volatile storage.
i. Sptrace system: is a diagnostic facility that monitors the performance of the PSM and SDR space
management systems.
j. Zco (zero-copy objects) system: leverages the SDR system’s storage flexibility and implements a
reference counting system.
k. Ionsec (ION security) system: manages information that supports the implementation of security
mechanisms in the other packages.

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Building ICI on a deployment platform
1. Decide where you want ION’s executables, libraries, header files, etc. to be installed.
2. Edit the Makefile in ion/ici:

• Make sure PLATFORMS is set to the appropriate platform name, e.g., x86-redhat, sparc-sol9, etc.
• Set OPT to your ION root directory name, if other than “/opt”.

3. Then:
• cd ion/ici
• make
• make install

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Configuring ICI on a deployment platform

Files used to provide the information to perform global configuration of the ION protocol stack:
• the ION system configuration (ionconfig) file
• the ION administration command (ionrc) file
• the ION security configuration (ionsecrc) file

The instantiation of ION on a given computer establishes a single ION node on that computer, for which
hard-coded values of wmKey and sdrName (see ionconfig(5)) are used in common by all executables to
assure that all elements of the system operate within the same state space.

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Running ICI on a deployment platform

The executable programs used in operation of the ici component of ION include:
• The ionadmin system configuration utility and ionsecadmin security configuration utility, invoked at

node startup time and as needed thereafter.
• The rfxclock background daemon, which effects scheduled network configuration events.
• The sdrmend system repair utility, invoked as needed.
• The sdrwatch and psmwatch utilities for resource utilization monitoring, invoked as needed.

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

Testing ICI on a deployment platform

Test executables are provided to support testing and debugging of the ICI component of ION
• The file2sdr and sdr2file programs exercise the SDR system.
• The psmshell program exercises the PSM system.
• The file2sm, sm2file, and smlistsh programs exercise the shared-memory linked list system.

Interplanetary Communication Infrastructure (ICI)

IN-DEPTH ION IN-DEPTH KNOWLEDGE

The DTN DevKit

Dev Kit Overview
NASA’s DTN development kit includes a configuration tool written by NASA’s Jet
Propulsion Laboratory and a set of mission-relevant scenarios using the Common Open
Research Emulator (CORE).
CORE provides a set of management functions on top of Windows and Linux Virtual
Containers that house the various ION node implementations (including
configurations). The Linux virtual machine that is part of the package contains the CORE
emulation environment, the ION BP implementation, and the DTN scenarios.

ION IN-DEPTH KNOWLEDGEIN-DEPTH

BP and CORE Relationship
In ION scheduled connectivity is controlled via the contact plan which controls any links
that use the Licklider Transmission Protocol (LTP) convergence layer via the contact plan.
Mobility scripts in CORE can automatically move nodes according to predefined paths, and
that movement may bring them into and out of contact with other nodes.

Remember! There is NO INTRINSIC RELATIONSHIP between
CORE’s notion of connectivity and that in the ION contact
plans. For scenarios that include changing connectivity, the
mobility of the CORE nodes is orchestrated to be synchronous
with the ION contact plans.

ION IN-DEPTH KNOWLEDGEIN-DEPTH

Use Case: BP applications
Running executable programs as part of BP with data convergence from multiple sources:
All scenarios included with the development kit start ION processes on each of the nodes, and run a
bpecho server on BP service ID 1 of each node, and a bprecvfile server on BP service ID 2 of each
node.
Any node should respond to a bping command of the form:
bping ipn:src_node_id.unused_service_ID ipn:dst_node_id.unused_serviceID
e.g. to ping from n2 to n3:

bping ipn:2.5 ipn:3.1

Send a file to any node using:
bpsendfile ipn:src_node_id.unused_service_ID ipn:dst_node_id.unused_serviceID FILENAME

e.g. to send the file README from n2 to n3:
bpsendfile ipn:2.5 ipn:3.2 README

ION IN-DEPTH KNOWLEDGEIN-DEPTH

The Base Scenario (as a linear
topology)
It will automatically start the
mobility script which moves the
satellite into and out of range
periodically, and will launch a bping
command from node 2 to node 4.
The ION contact plan is
synchronized with the mobility.
Pings will be received whenever the
satellite is connected to the fixed
network. When the satellite is
disconnected, bundles are queued
for later delivery. Refer to “DTN development Kit v1.3”

*Use Case: BP applications

ION IN-DEPTH KNOWLEDGEIN-DEPTH

The Diamond Scenario (topology
with alternating connectivity
between nodes and the destination)
It has no mobility and two paths
from the source (n1) to the
destination (n4), with connectivity
alternating between the last links of
the left hand and right hand paths
every 30s.
n1 is connected to n2 and n3, and
n2 and n3 are each intermittently
connected to n4 with 50% duty
cycles and 180 degrees out of
phase.

Refer to “DTN development Kit v1.3”

*Use Case: BP applications

ION IN-DEPTH KNOWLEDGEIN-DEPTH

IN-DEPTH

Other scenarios:
• GSFC (Automatic BPI demo): a

scenario where a satellite has a
high-rate downlink to a ground
station, and the ground station
has a lower-rate link across the
terrestrial network.

• The “Mars” scenario: uses an
emulated Mars orbiter as a ‘data
mule’ to transfer information
from the emulated rover to the
mission control center via one of
the emulated DSN stations.

• The “Planet” scenario: emulates
a LEO spacecraft communicating
with a number of different
ground stations, where all
ground stations can receive from
the satellite but only two (node
n2 and n5) can transmit to the
satellite .

*Use Case: BP applications

Refer to “DTN development Kit v1.3”

ION IN-DEPTH KNOWLEDGE

Theory

Space communication and challenges

DTN implementations

ION Architecture

The Basic ION Structure and Functions

ION Modules

Introduction to the DevKit

WRAP-UP

Topics discussed this afternoon:

Any questions?

Q&A

Thank you!

Goodbye for now!

